Discretization of variational regularization in Banach spaces
نویسندگان
چکیده
Consider a nonlinear ill-posed operator equation F (u) = y where F is defined on a Banach space X. In this paper we analyze finite dimensional variational regularization, which takes into account operator approximations and noisy data. As shown in the literature, depending on the setting, convergence of the regularized solutions of the finite dimensional problems can be with respect to the strong, or just a weak topology. In this paper our contribution is twofold. First, we derive convergence rates in terms of Bregman distances in the convex regularization setting under appropriate sourcewise representation of a solution of the equation. Secondly, for particular regularization realizations in nonseparable Banach spaces, we discuss finite dimensional approximations of the spaces and the type of convergence, which is needed in the convergence analysis. These considerations lay the fundament for efficient numerical implementation. In particular, we emphasize on the space X of finite total variation functions and analyze in detail the cases when X is the space of functions of finite bounded deformation and the L∞–space. The latter two settings are of interest in numerous problems arising in optimal control, machine learning and engineering.
منابع مشابه
Extensions of Saeidi's Propositions for Finding a Unique Solution of a Variational Inequality for $(u,v)$-cocoercive Mappings in Banach Spaces
Let $C$ be a nonempty closed convex subset of a real Banach space $E$, let $B: C rightarrow E $ be a nonlinear map, and let $u, v$ be positive numbers. In this paper, we show that the generalized variational inequality $V I (C, B)$ is singleton for $(u, v)$-cocoercive mappings under appropriate assumptions on Banach spaces. The main results are extensions of the Saeidi's Propositions for fi...
متن کاملConvergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities
In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicat...
متن کاملThe System of Vector Variational-like Inequalities with Weakly Relaxed ${eta_gamma-alpha_gamma}_{gamma inGamma}$ Pseudomonotone Mappings in Banach Spaces
In this paper, we introduce two concepts of weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in Banach spaces. Then we obtain some results of the solutions existence for a system of vector variational-like inequalities with weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in reflexive...
متن کاملHanke-Raus heuristic rule for variational regularization in Banach spaces
We generalize the heuristic parameter choice rule of Hanke-Raus for quadratic regularization to general variational regularization for solving linear as well as nonlinear ill-posed inverse problems in Banach spaces. Under source conditions formulated as variational inequalities, we obtain a posteriori error estimates in term of Bregman distance. By imposing certain conditions on the random nois...
متن کاملRegularization of Nonlinear Ill-posed Equations with Accretive Operators
We study the regularization methods for solving equations with arbitrary accretive operators. We establish the strong convergence of these methods and their stability with respect to perturbations of operators and constraint sets in Banach spaces. Our research is motivated by the fact that the fixed point problems with nonexpansive mappings are namely reduced to such equations. Other important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010